

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Jeudi 16 mai 2013 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.
- Le nombre maximum de points pour cette épreuve d'examen est [30 points].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 A t (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
ts 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
odiqu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
ın péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
u de la				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
Le tableau de la classification périodique des éléments 3	tomique ,	Element Masse atomique relative		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro atomique	Elen asse atom		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
		Σ_		22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 S c 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	: -	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. Qu'est-ce qui contient le plus grand nombre d'ions?
 - A. 1 mol de $Al_2(SO_4)_3$
 - B. 1 mol de $Mg_3(PO_4)_2$
 - C. 2 mol de K₃PO₄
 - D. 3 mol de NaNO₃
- 2. Combien d'atomes sont présents dans 0,10 mol de PtCl₂(NH₃)₂?
 - A. 6.0×10^{22}
 - B. $3,0 \times 10^{23}$
 - C. 6.6×10^{23}
 - D. 6.6×10^{24}
- 3. Laquelle des options suivantes décrit le mieux la masse atomique relative, A_r ?
 - A. Le nombre de neutrons et de protons présents dans le noyau d'un atome
 - B. Le nombre moyen de neutrons et de protons dans tous les isotopes d'un élément
 - C. La masse moyenne pondérée des isotopes d'origine naturelle d'un élément, comparée à la masse d'un atome de carbone-12
 - D. La masse moyenne pondérée des isotopes d'origine naturelle d'un élément, comparée au 1/12^e de la masse d'un atome de carbone-12

$$\text{CaCO}_3(\textbf{s}) + 2\text{HCl}(\textbf{aq}) \rightarrow \text{CaCl}_2(\textbf{aq}) + \text{H}_2\text{O}(\textbf{l}) + \text{CO}_2(\textbf{g})$$

- A. 0,050
- B. 2,2
- C. 4,4
- D. 5,0
- 5. Quel volume de dioxyde de carbone, $CO_2(g)$, en dm³, est produit quand 1 dm³ d'octane, $C_8H_{18}(g)$, subit une combustion complète?

$$2C_8H_{18}(g) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

- A. 1
- B. 4
- C. 8
- D. 9
- **6.** Lequel est un isotope de ²⁴Mg?
 - A. $^{24}_{11}$ Na
 - B. $^{24}_{12}Mg^{2+}$
 - C. $^{26}_{12}$ Mg
 - D. 22 Ne

7.	Ouel est 1	'ordre correct	des stades	de fonctionneme	ent dans le spe	ctromètre de masse?

- A. vaporisation, ionisation, accélération, déflexion, détection
- B. vaporisation, ionisation, détection, déflexion, accélération
- C. ionisation, vaporisation, accélération, déflexion, détection
- D. ionisation, déflexion, accélération, détection, vaporisation

8. L'élément X se trouve dans le groupe 5 et la période 4 du tableau périodique. Quelle proposition est correcte ?

- A. X a 5 niveaux d'énergie occupés.
- B. X peut former des ions avec la charge 3–.
- C. X est un élément de transition.
- D. X a 4 électrons de valence.

9. Quelles propositions sont correctes à propos des halogènes F à I?

- I. Le point de fusion augmente
- II. L'énergie de première ionisation augmente
- III. Le rayon ionique augmente
- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III

Tournez la page

- 10. Laquelle des descriptions suivantes décrit le mieux une liaison métallique ?
 - A. L'attraction électrostatique entre des ions de charge opposée
 - B. L'attraction électrostatique entre une paire d'électrons et des noyaux de charge positive
 - C. L'attraction électrostatique entre un réseau d'ions positifs et des électrons délocalisés
 - D. L'attraction électrostatique pour une paire liante d'électrons qui ont été fournis par l'un des atomes
- 11. Quelles propositions concernant le graphite sont correctes ?
 - I. Les atomes de carbone sont tenus en couches avec des attractions faibles entre les couches.
 - II. Le graphite est un non-métal qui conduit l'électricité.
 - III. Chaque atome de carbone est lié à trois autres atomes de carbone par une liaison covalente.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- 12. Quelles propositions sont correctes à propos des liaisons entre deux atomes de carbone ?
 - I. Les liaisons simples sont plus longues que les liaisons triples.
 - II. Les liaisons simples sont plus fortes que les liaisons doubles.
 - III. Les liaisons triples sont plus fortes que les liaisons doubles.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III

13. Quelles propositions concernant la structure et la liaison du dioxyde de silicium sont correctes ?

	Structure	Liaison
A.	Le dioxyde de silicium forme un réseau covalent géant.	Chaque atome d'oxygène est relié à deux atomes de silicium par une liaison covalente.
В.	Les molécules de dioxyde de silicium sont en forme de V ou coudées.	Chaque atome de silicium est relié à deux atomes d'oxygène par une liaison covalente.
C.	Les molécules de dioxyde de silicium sont linéaires.	Il existe une double liaison covalente entre les atomes de silicium et d'oxygène.
D.	Le dioxyde de silicium forme un réseau covalent géant.	Chaque atome d'oxygène est relié à quatre atomes de silicium par une liaison covalente.

14. Quelle série présente des points d'ébullition croissants ?

A.
$$CH_3CH_2CH_3 < CH_3CH_2OH < CH_3CHO$$

C.
$$CH_3CH_2OH < CH_3CHO < CH_3CH_2CH_3$$

D.
$$CH_3CH_2CH_3 < CH_3CHO < CH_3CH_2OH$$

15. Quelles propositions sont correctes pour une réaction exothermique ?

- I. Les produits sont plus stables que les réactifs.
- II. La variation d'enthalpie, ΔH , est négative.
- III. La température de l'environnement extérieur augmente.
- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III

2213-6122 Tournez la page

- **16.** La chaleur massique (chaleur spécifique) de l'aluminium est de 0,900 J g⁻¹ K⁻¹. Quelle est la variation d'énergie thermique, en J, quand on chauffe 10,0 g d'aluminium et que sa température augmente de 15,0 °C à 35,0 °C ?
 - A. +180
 - B. +315
 - C. +1800
 - D. +2637
- 17. La réaction entre le méthane et l'oxygène est exothermique.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Quelle proposition est correcte?

- A. Les enthalpies de liaison totales des réactifs sont inférieures aux enthalpies de liaison totales des produits.
- B. Les enthalpies de liaison totales des réactifs sont supérieures aux enthalpies de liaison totales des produits.
- C. L'énergie totale libérée durant la formation des liaisons est inférieure à l'énergie totale absorbée durant la rupture des liaisons.
- D. L'énergie d'activation est la différence entre les enthalpies de liaison totales des produits et les enthalpies de liaison totales des réactifs.
- **18.** Quelles propositions expliquent l'accélération de la vitesse d'une réaction quand la température augmente ?
 - I. Un plus grand nombre de particules ont une énergie supérieure à l'énergie d'activation.
 - II. La fréquence des collisions augmente.
 - III. L'énergie d'activation diminue.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III

Les questions 19 et 20 se réfèrent toutes les deux à la réaction suivante.

L'hydrogène et l'iode réagissent dans un récipient fermé pour former de l'iodure d'hydrogène.

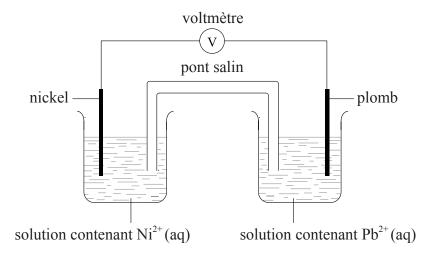
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

À 350 °C
$$K_c = 60$$

À 445 °C $K_c = 47$

- **19.** Quelle proposition est correcte quand le système est à l'équilibre à 350 °C?
 - A. Les concentrations de tous les réactifs et produits sont égales.
 - B. Les concentrations des réactifs sont supérieures à la concentration du produit.
 - C. La réaction, telle qu'elle est formulée, peut tout juste se dérouler à cette température.
 - D. La réaction, telle qu'elle est formulée, se déroule presque jusqu'à son achèvement à cette température.
- 20. Quelle proposition décrit et explique les conditions qui favorisent la formation d'iodure d'hydrogène ?
 - A. Une température plus élevée, car la réaction directe est exothermique, et une plus grande pression, car il y a deux réactifs gazeux et un seul produit gazeux
 - B. Une température plus élevée, car la réaction directe est endothermique, et la pression n'a aucun effet, car il y a des quantités égales, en mol, de réactifs et de produits gazeux
 - C. Une température plus basse, car la réaction directe est exothermique, et une pression plus faible, car il y a deux moles de produit gazeux mais seulement une mole de chaque réactif gazeux
 - D. Une température plus basse, car la réaction directe est exothermique, et la pression n'a aucun effet, car il y a des quantités égales, en mol, de réactifs et de produits gazeux
- **21.** Quelle liste contient seulement des bases fortes?
 - A. ammoniac, hydroxyde de sodium, éthylamine
 - B. hydroxyde de potassium, ammoniac, hydroxyde de sodium
 - C. hydroxyde de lithium, hydroxyde de potassium, hydroxyde de baryum
 - D. ammoniac, éthylamine, hydroxyde de baryum

2213-6122 Tournez la page


- **22.** Quels produits seraient formés si l'on faisait réagir de l'acide chlorhydrique avec de l'oxyde de magnésium ?
 - A. du chlorure de magnésium et du dioxyde de carbone
 - B. du chlorure de magnésium, du gaz hydrogène et de l'eau
 - C. du magnésium, du gaz hydrogène et de l'eau
 - D. du chlorure de magnésium et de l'eau
- 23. Quelle proposition décrit un agent réducteur ?
 - A. Il est réduit et gagne des électrons.
 - B. Il est réduit et perd des électrons.
 - C. Il est oxydé et gagne des électrons.
 - D. Il est oxydé et perd des électrons.
- **24.** Qu'est l'agent oxydant dans la réaction suivante?

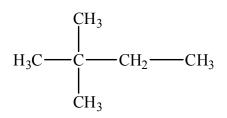
$$5SO_2(g) + 2IO_3^-(aq) + 4H_2O(1) \rightarrow 5SO_4^{2-}(aq) + I_2(aq) + 8H^+(aq)$$

- A. SO₂
- B. IO_3^-
- C. H₂O
- D. SO₄²⁻

25. La réaction globale dans la pile voltaïque ci-dessous est :

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

Quelle proposition est correcte pour la demi-pile au nickel?


- A. Le nickel est l'électrode positive (cathode) et il est réduit.
- B. Le nickel est l'électrode négative (anode) et il est réduit.
- C. Le nickel est l'électrode positive (cathode) et il est oxydé.
- D. Le nickel est l'électrode négative (anode) et il est oxydé.

26. Quels trois composés peuvent être considérés comme une série homologue?

- A. CH₃NH₂ CH₃CH₂NH₂ CH₃CH₂CH₂NH₃
- B. CH₃CH₂CH₂NH₂ CH₃CH(NH₂)CH₃ CH₃(NH)CH₂CH₃
- C. C(CH₃)₄ CH₃CH₂CH₂CH₂CH₃ (CH₃)₂CHCH₂CH₃
- D. CH₃CH₂COOH CH₃COOCH₃ HCOOCH₂CH₃

2213-6122 Tournez la page

27. Quel est le nom du composé suivant selon les règles de l'UICPA?

- A. 1,1,1-triméthylpropane
- B. 2,2-diméthylbutane
- C. 3,3-diméthylbutane
- D. 2-méthyl-2-éthylpropane
- 28. Quels sont les produits possibles de la combustion incomplète du propane ?
 - A. monoxyde de carbone, hydrogène et carbone
 - B. dioxyde de carbone, carbone et hydrogène
 - C. carbone, monoxyde de carbone et eau
 - D. dioxyde de carbone et eau seulement
- **29.** Quelle équation représente une étape de propagation dans le mécanisme de la réaction entre l'éthane, C_2H_6 , et le chlore, Cl_2 , en présence de lumière solaire/UV?

A.
$$C_2H_6 + Cl \cdot \rightarrow C_2H_5 \cdot + HCl$$

$$\mathrm{B.} \quad \mathrm{C_2H_6} + \mathrm{Cl} \bullet \to \mathrm{C_2H_5Cl} + \mathrm{H} \bullet$$

C.
$$Cl_2 \rightarrow 2Cl \bullet$$

D.
$$C_2H_5 \cdot + Cl \cdot \rightarrow C_2H_5Cl$$

30. En utilisant un pH-mètre précis, on a trouvé que le pH de la limonade est de 2,30. Certains élèves ont déduit le pH de la limonade après titrage avec une solution 0,10 mol dm⁻³ d'hydroxyde de sodium. Leurs valeurs déterminées du pH étaient 2,4 , 2,5 , 2,4 et 2,4. Quelle est la meilleure description de la précision et de l'exactitude de ces mesures ?

	Précision	Exactitude
A.	précise	inexacte
B.	non précise	inexacte
C.	précise	exacte
D.	non précise	exacte